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FOREWORD

A cylindrical coordinates approach to phenomenological band structure
calculations introduced previously is generalized to include spin degrees of
freedom and the spin orbit interaction. The pertaining reduction of the
Schrodinger equation to a set of l-d wave equations is derived. For the test
case of PbSe band along the r-L line, the correct bands are reproduced in the
numerically-stable range of parameters.
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ABSTRACT

A rapidly convergent method for band structure calculations, based on a
cylindrical coordinates expansion, is generalized to include the spin-orbit
interaction. This approach is advantageous particularly for materials highly
anisotropic in one direction. The pertinent wave equations are tested for the
PbSe low bands along the r-L line. The results compare well with PbSe known
band structure except where the bands group together to form degenerate, or
near degenerate, equal parity clusters.
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SECTION 1

INTRODUCTION

In a previous paper I (hereafter referred to as I), we introduced a
method for band structure calculations along a high-symmetry axis. The method
constitutes of expanding the wave function (and potential) in cylindrical
coordinate multipole and reducing the three-dimensional Schrodinger equation
to a set of coupled one-dimensional wave equations for these multipoles. The
primary advantage of the method is its good convergence, in particular for
anisotropic systems with a unit cell largely extending in one direction, Z'.
Examples for such systems are superlattices, intercalates, and a lattice
bounded by a surface. The method applies equally to bulk band calculations
along a high-symmetry axis. In this paper we generalize the method to include
spin degrees of freedom. Such an extension is necessary in situations where
the spin-orbit (SO) interaction is important. A case in point, the heavy-
element narrow gap semiconductors belonging to the II-VI and IV-VI systems.

2

For these materials, the SO interaction is essential to correctly obtain the
band gap. Another application is the calculation of g-factors where the
inclusion of spin degrees of freedom is obviously indispensable. We outline
first the method without spin and point out the modifications mandated by the
presence of the spin degrees of freedom. We then comment on the main points
borne out by the band calculation of PbSe, which serves as a test case.

At the core of the method is the cylindrical multipole expansion of
lattice periodic functions. I Examples of such functions are band wave
functions, the pseudopotential, and the spin-orbit form factor. These
multipoles follow naturally from the introduction of cylindrical coordinates,
chosen such that its z-axis coincides with Z', the high-symmetry axis. For
example, the multipole expansion of a band wave function *(') where the
crystal's momentum 1 points at the '-direction is1

*(r') X i i(gFz') J1 (gFP) e
i1  (I-I)

g F J-00

In Equation (1-1), gF runs over a series of lattice-specific nonnegative
values (Table 1-1), Jj(x) is the Bessel function of order I and (p,$,z') are
the standard cylindrical coordinates. Rapid convergence of Equation (1-1)
implies that a small number of distinct multipoles *I(gF,z') yields a good
description of *(_').

1-1
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TABLE 1-1. STRUCTURE OF fcc g-HEXAGONS ASSOCIATED WITH THE [111] DIRECTION

g - f/a (in A-1 )

(a) Do (g)
f g(PbSe)(a) (degrees)

1. 0. 0. 0.

2. 10.2606 - 2n 1.6754 0.

3. 17.7714 = 2 1 ,J- 2.9018 30

4. 20.5207 - 2n 32 3.3507 0.

5. 27.1465 4.4326 19.1066

6. 30.7813 5.0261 0.

7. 35.5430 5.8036 30

8. 36.9944 6.0406 13.8979

9. 41.0414 6.7014 0.

10. 44.7239 7.3027 36.5868

11. 47.0193 7.6775 10.8934

(a) We used' a(PbSe, T - 300K) - 6.1243 A

NOTE: The g values and 4'0(g) angle (Equation (3-1)) for the PbSe (fcc) lattice
in the [1111 direction.

1
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The convergence of Equation (1-1) hinges on two general properties,

which severely limits the number of contributing 2 and gF indices. The I

variation is controlled by the symmetry of the z'-axis. For example, group-

theoretic considerations imply that for a fcc lattice and z'IiI1 only two

values need be considered. All other multipoles are phase related to those

two multipoles. As a consequence, expansion (1-1) is in effect an expansion

in gF. The gF expansion, in turn, is controlled by an energy-geometry
argument. To see this point, note that in Equation (1-1) the transversal

behavior of T(r°) is controlled by the oscillations of JI(gFp), with period

-l . Therefore for "low" band energies, the important terms in Equation (1-

involve only the lowest gF-values, up to a cutoff value gc" Based on the

behavior of the JI(x) curve, the latter has been estimated in I to satisfy (2

+ 3 /2 )/gC = .5 aT where 2 is a typical I-value and aT is of the order of the

lattice constant in the transversal direction. For the PbSe example (see I),

gc turns to be approximately the second g value (see Table 1-1; the first g

value, g = 0, always contributes). Thus both the I and g variation in

expansion Equation (1-1) are severely restricted, hence the rapid convergence.

It is important tG emphasize that the above considerations are valid

regardless of the extension of the unit cell in the ' direction! In

particular, the good convergence of Equation (1-1) applies equally for bulk

materials and superlattices provided they share the same high symmetry axis

2'. The validity of these arguments has been numerically tested in I for a

simple case.

The second important ingredient of the method is the simplicity of the

pertinent wave equations for TI(g,z'). 1 This is a set of coupled, one-

dimensional second-order ordinary differential equations (in z'). The

coupling potentials are derivable from the underlying three-dimensional

pseudopotential by means of geometrical coefficients, the "A-coefficients"

(see I). These equations are reminiscent of a set of coupled Kronig-Penney

models.5 They can be solved by any convenient algorithm such as straight

integration (when the energy is not too low), or via conversion into a secular

matrix.

With spin degrees of freedom the features just discussed hold, though

some of the details change. An obvious modification is that with spin, the

wave function is comprised of two components pertaining to the two possible

spin projections. Consequently, two multipole expansions such as

Eq,,ation (1-1) need be considered simultaneously, and the total number of

relevant multipoles roughly doubles. The corresponding wave function for the

multipoles include additional terms (in comparison to the no-spin

counterpart), one of which is a first order derivative (Section 4). The SO

effect is primarily mixing the two spin components of the wave function. In

the present phenomenological approach, this mixing is controlled by adjustable

parameters. The relative ease of including SO is an attractive feature of the

present method.

1-3
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To demonstrate how the method works, and as a first application, we
consider the PbSe band structure along the [111] direction. The analysis
demonstrates several points:

1. Group-theoretic considerations directly indicate the SO-induced

admixtures. In particular, we recover the effect of band gap reduction by the
SO interaction.

2. We correctly obtain the low bands throughout most of the r-L line.
Numerical artifacts, however, limit at present the method to non-degenerate

bands.

3. The spin-orbit interaction depends on two phenomenological
parameters, roughly corresponding to the (1-0, j-1/2) and (1-1, j-1/2, 3/2) So

strengths.

The paper is organized as follows. In Section 2 we introduce the
multipole expansion in the presence of spin. In Section 3 we discuss the

group-theoretic considerations pertaining to the cylindrical multipoles.
Section 4 is devoted to the derivation of the central wave equations for the
multipoles. The last section describes the results of numerical calculation

for PbSe bands in the r-L direction and a brief discussion. Most of the

technical details are given in the appendices.

1-4
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SECTION 2

CYLINDRICAL COORDINATES MULTIPOLE EXPANSIONS IN THE PRESENCE OF SPIN

The formalism described in I is extended here to include spin. In the
unprimed coordinates (x,y,z), the spin wave function is a spinor (X(o)) where

(x(l)) and (X(-l)) designate the "spin-up" and "spin-down" states,
respectively. Hereafter, we adopt the notation that parentheses around a
function or operator indicate a spinor, such as for (X(O)). Using this
notation, a spinor Bloch function in the unprimed coordinates (T has the
form

6

ik-re (U -(r)) (2-1)
nk nk

where the lattice-periodic spinor (Unr( )) has the decomposition
7

(Unk(r)) = - U~j)(r) (X(a)) U (2-2)nk nkU 4

0-1 [u(k (r)J

To derive the multipole expansion of Equation (2-1) we first transform
to the primed coordinates where Z' points at the direction of a high-symmetry
axis. Such a rotation affects also the spinors since

R [4((')(X)] = [R *(r)] [R(X)] (2-3)
A

where R is the rotation operator, and *(-) and^(x) are an arbitrary function
and spinor, respectively. The spinor factor [R(x)] transforms according to
the D1/2 (aP,) twoAdimensional matrix 6'8 where a,p,y are the Euler angles.
The radial factor [R*(F)] = *(R-'r') has been discussed in I. As in I, we
limit ourselves to crystal momentum ' such that V-'-' - k'z'. Therefore, in
the primed coordinates

( -,(r')) - e ik'z' u(?(r')(x'(o)) (2-4)
nk nk

() aa)(where U ,(') are linear combinations of U (r) and the spinors (X'(o))
nk' nk

refer to the Z'-direction. For the [1111 direction in particular

2-1
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3"
0 < k' = K 3

0 < K 1 a* = aj- (2-5)

The form Equation (2-4) involves two lattice-periodic functions.

Therefore in analogy to Equation (1-1) (see I), they have the following
multipole expansion

n,(')) = X gFz') JI(gFp) e  (X'(° )) (2-6)o=± gF 1=--

where the two spin multipoles are given by

() I(o) (,) i(k'+L) z' -i2 (2-7)1(°(gF'z'= ee(27

I'TI = gF

In Equation (2-7) t' denoted a reciprocal lattice vector in the primed

coordinates, t+ is its transversal (normal to z') component, C(') are the

Fourier coefficients of W(r'), and the shift phase 6(t+) is defined in I.

We turn now to the SO interaction. The goal is to cast it in a form

compatible with expansions of the structure Equations (2-6) and (2-7).

In the unprimed coordinates and cgs units, the spin orbit interaction is

given by
6 '9

(A0 ) -i h2
( 4m2 c2 [ . (V(r) x V) (2-8)

0

In Equation (2-8) the Pauli-matrices "vector" is a= (OxOyaz) and V(r) is

the proper ionic lattice-periodic potential. The details of V(r) are unknown.

However, in the ionic core portion of space, where its derivative is the

largest, it is customarily approximated by a Coulombic potential Vc (r) with a

form factor. For an ion at r = 0, it follows that V V(r) = V (r) 3 rejz•c 3

r
where Z is the effective ionic charge. Consequently, Equation (2-8) takes the

standard form

* .2
h 2 jej2Z( )(29

(Vso (r)) 2 2 3 ( . 2) (2-9)

IrI-o 4m20 c r

2-2
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where the angular momentum is 2 = -ir x V.

For a lattice-periodic array of ions, a natural generalization of
Equation (2-9) is

A A

(V= fi(Ir r i ) (a. (r - ri (2-10)

where ri runs over all atomic positions in the crystal and fi(lV - 'ij) is a
phenomenological form factor. This form is readily transformed to the

A * A A

primed coordinates since (a . 2) - (a' . ') and distances jr - ril are
conserved by rotations. In addition, since the nonderivative factors in
Equation (2-10) are lattice-periodic, the Fourier expansion of the SO form
factor in the primed coordinates is

fi~l , ,iG'.r'
ffjI' - 1) (r' - f(d') e . (2-11)i I i

and the SO interaction Equation (2-10) takes the convenient form

_+- iG ' , )( - 2

(V so(')) - -i (a' .[ f (G') e xiV1) (2-12)

The form Equation (2-12) is mathematically convenient. Its operation on

products of the type e (X'(o)), as in Equation (2-7), is easily
evaluated. It also naturally introduces the multipoles of the SO vector form

factor Equation (2-11), i.e.,

f( = rg,z') J (gQp) e (2-13)
gQ 2=-az

where in analogy to Equation (2-7) (see I, Section 2)

2 (gQ,z') eiGzz' e-i8(T') (2-14)

'~~ eG2-4

R i - gQ

The 12 (gO,z'), of dimensionality [E*2], are the SO counterparts of the
"centralg pseudopotential multipoles vj(gp,z') .

2-3/2-4
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SECTION 3

SYMMETRY PROPERTIES

The assumption that Z' is a high symmetry axis imposes severe
restrictions on the allowed I values in a multipole expansion such as
Equation (2-6) in part I. Lattice-periodicity in the transversal direction
(normal to ^') yields additional constraints on the allowed I values. In this
Section we consider these constraints in the presence of spin degrees of
freedom. For the sake of self containment we first briefly review results
from part I. Technical details are given in Appendices A and B.

Consider the multipoles of a lattice-periodic function W(r') with
Fourier components W(i')., Thq orIgin of symmetry properties is that for a
r9ciprogal yector i' - (G , Gz) in the primed coordinates, all

-T (Gy, G ) such that O Tu - g, lie on spokes of one or two conjugated
hexagons (Figure 3-1, I). Furthermore, there are simple phase relations
between W(i') and W((C')R) where ( ')R - (('T)R' G,'), ( T)R - (Gx ' -t

G y ') '

These properties and the structure of a multipole Equation (2-7) lead o a
situation in which, for a particular I value, either all terms in the
summation Equation (2-7) cancel out or add up. As a specific example, the
pseudopotential v(+), by its very construction, is invariant under all
symmetry operations of the fcc lattice. In particular, it transforms as the
scalar under the Oh group and under all subgroug of Oh l such as the C3v and
D3d groups associated with the [111] direction. This, in turn, restricts
the I-values in Equation (1-1) to I - 3m, m - 0, ±1 .... (I, Table 3-3). In
addition, by virtue of the structure of the multipole vl(gp,z'), it is I-
periodic (see I):

v1± 6 (gpz') = -e t
6i%(g) v(gp,z')

for sin [60 0 (g)] - 0 (3-1)

where to(g) is given in Table 1-1. These two constraints imply that I - 0, 3
are the only independent multipoles for v(*); all others are phase related.

In t e presence of spin, the underlying symmetry groups are the double
groups C and D d)6 , (see Appendix A). The corresponding I sequences are
derived in Appendix B and summarized in Tables 3-1, 3-2. Note that the
allowed I values for the "up" and "down" spin components are different, albeit
they still belong to sequences with an

3-1
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TABLE 3-1. MULTIPOLE CONTENT OF THE IRREDUCIBLE SPIN REPRESENTATIONS OF C3v

I-parity
IRREDUCIBLE
REPRESENTATION I -values (a) R(b) d

( 3m -1 13m 0 iA4  3m +11J ()1- oJ 1

AC 3m -11 (3 o 1 015 3m +1J 1-i 0J

A6  11>_ [3mn), 12>= (33m~i '03i 001]' 2

6 1m + m~l) 1 1 0o
.10 0 0

(a) m- 0, +1, +2, +3 .....

(b) U_ (g,z') A U 2 (g,z') U_(g,z') UI(g,z')

I)-u or V_ (g,z') V (g,z')

v_ ,v(g,z,') J o A

w_-(g,z') WI(g,z,)

X_,(g,z') X/(g,z')

NOTE: The I-sequences pertaining to the representations of the double group
C ) . The notation is explained in Appendix B.

3-2
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TABLE 3-2. MULTIPOLE CONTENT OF THE IRREDUCIBLE SPIN REPRESENTATIONS OF D(d)

2-parity z-parity

IRREDUCIBLE

REPRESENTATION 2-values(a) I(b) z(C d

+L4"  l> [3m -] (-1)3m [0 ] -(1) (- 1 0]

L+ i>= 3m- (-I1)3m 01 -i(13m +11 Ii 0J 0~ u
I1. 3m -] (~3m [0 -i]~ ~ ) [1 0]

3m 21 3m3m 0 -i00(-3 2

5 3m +1 11 0

L6 ji>_ [13m] '2>- 3m m-] (_1)3m [0010] -(-i)3m [i0  i 0 0

13m +1J 1 3mJ010000-

(a) m = 0, +3, +6.....

(b) See Table 3-3 for the definition of I.

(c) U(g,-z') U2 (g,z') U2(g,-z') U2 (g,z')

V2 gz) or V2 (g,.z,) V2 (g,z,)V ( ,_ )  z V I(g,z,) I^
W2 (g,-z') z W (g,z')

XX X2 (g,-z') X (g,z')

NOTE: The 2-sequences pertaining to the representations of the double group Di ) .

notation is explained in Appendix B.

3-3
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increment of ±3. Equation Equation (3-1) is valid for each spinor component
individually. When sin[60 0 (g)].eO the I-periodicity relationship becomes more
complex, however, this situation does not arise in our example (Section 5
and I).

The comparison of the multipole content of the wave function (i.e., the
allowed I values) with spin (Tables 3-1, 3-2) with the corresponding tables in
the no-spin case (Tables 3-2, 3-3 in I) is instructive. By matching the
allowed I-value sequences, it is possible to infer the representations admixed
by the SO interaction. Consider first a A-point, i.e., Table 4-1 and
Table 3-2 in I. From the comparison we conclude that the spinless A1 , A2
representations are admixed with the A3 representation to yield the A6 spin
representation. On the other hand, the spin representations A4, A5 result
from the splitting the degeneracy of the spinless A3 representation by the SO
interaction. At the L-point, comparing Table 3-2 with Table 3-3 in I implies
that the SO interaction mixes LI, L2, with L3 (and Lit, L2

1 , with L3 ') to give
the spin representation L6

+ (or L61".

Consider now the SO vector form factor f(*'), Equation (2-11). By
comparing it to Equation (2-8), it follows that t-( ') - i'V(P') where V(P')
transforms as a scaler under the point group transformations. Since V(r') has
the multipole expansion Equation (1-1) with I - 3m, m - 0, ±1, 2 ..., and

a a s
-cos - s

x ap P 4
a sin + a

a a (3-3)

it follows from the Bessel functions properties4 that the only SO non-
vanishing components are

f (x g') f(Y') ( g gQ

3m+lf ( ,z') - - gQ V3m (gQ,z')

3m (g Q,z')- i fY'm (gQ,Z') - gQ v3m (gQ,z')

f W') (g ,) (
3m (gQ,Z') - V3m (gQ,Z

m - 0, ±1, ±2, ... (3-4)

' (-2f~x) (gQ~z' Y')(gz), z)
where 2(g Qz') a (f (gz f), f g) (gQ,Z')) and V3m(gQz')Qm I ,Q'

are the multipoles of V(*).

3-4
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Eliminating V3m(gQz') from Equation (3-4) yields general symmetry
relations for the SO vector form factor:

f~x') . f(x')fy)

f3m) (gQz') = -3m- (gQ,z') - i f3m} (gQ,z')

f(Y,) (gQ,z') - f Y', (gQ, z') - i f3m_ (gQ z')

for m - 0, ±l, ±2, (3-5)

When the I-sequence of Equa "on (3-5) is compared to Table 3;3 in I, it
follows that f(x')(z,), f(y )(-') transform as L3 ' while f(z (Z') transforms
as the L2 ' representations of D3d.

3-5/3-6



NAVSWC TR 91-326

SECTION 4

THE MULTIPOLES WAVE EQUATIONS

In this section the wave equation for the multipoles I is generalized to

include the spin degrees of freedom and the SO interaction. We follow the
method in I, i.e., first the interaction terms are transcribed to a product
form and then the decomposition theorem is applied.

In the primed coordinates, the Schrodinger equation with spin-orbit

interaction is

2m0  2m0  2m00., + m- Vo ) (()) = 0 (4-1)
[n 2+VOr) nk

where (Vso(r')) is the SO interaction and m0 is the effective mass, chosen to
be the free electron mass. Inserting the wave function multipole expansion
Equation (2-6) into Equation (4-1), projecting on e'i and factoring out the
Bessel functions, we obtain:

2 2m d2 (a)L-go + E(k) + d * g 0 z')

2mox) 2mo 1o
" ( (gO'z ) " -

(Y 2 (gO'z')) (x'(o)) - 0 (4-2)

In Equation (4-2) the X (a).and (yI(o)) terms originate from the products
"v(r')*(r')" and "(Vso(r ) Wr'))" in the Schrodinger Equation, respectively.

The former has been discussed extensivel' in I. The latter is new.

Specifically, the goal is to express (Y1 (g0 ,z')) in terms of multipoles
pertaining to the SO form factor and the wave function. Details are given in
Appendix C; the rest of the details are readily carried over from I. These
steps yields the multipoles wave equation.

4-1
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2m 2 i) (gOz')

+ 2 + 0 E , ( ) + - [ 0 Z +

0 2 1 m( P 2(T ( 2- (gFz')

3 0 f')( ) -m 1 g '

+ fIZ(g )(gpp,Z'] mm 0Fz I)(g

2 m 21 (z') 0 1 J)
0  z I-m -l(gF'

h2  2 [-2f+z (gp,Z' ) 0f'(p ,z') _1 9'l)l~FZ)m

h2m 2 f fm(+Ip,, 0-i) (g ,zf

l F (4-3a)

The symbols in Equation (4-3) denote the following: The band energy is
denoted by En(k'), th_ ±l)(gF,z') are the two spin components multipoles of
the wave function (Equation (2-6)), v (gpz') are the multipoles o v(r') -

the central potential (Equation (4-i)), the SQ vector multipoles f ±(gp,z')ndf )(gpZ') are defined in Equations (2-14), (3-4) and

f2() (gZ') gfpx')(gp,Z) - W) (gp) (4- 3b)

z 2 0 ~f~ (gpl Im~,gz') 4-a

and the geometrical A')m (gar gP' gF) 'coefficients have been introduced and
discussed in I. The selection rules for , m, gF and gp are incorporated into

the A-coefficients. The boundary conditions for the wave function multipoles

are derived from the Bloch theorem in the [111] direction

)gz' + a*) - e i' (gF., z') (4-3c)

where k',a are defined in Equation (2-5).

The single variable wave equations, Equation (4-3), is the central
result of this work. The band symmetry is specified by the selected -
sequence according to Tables 3-1 and 3-2. Note that the i-sequence for

dend o n o, the in e The selected g values, in

where(gF,z')ar deied , sin aetion5 .

ascending order (Table 1-1), are controlled by considerations of convergence

and available computing capacity.
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An interesting feature of Equation (4-3) is the appearance of first

derivative (a/az') terms. They originate from the z' derivative terms in 1.s.
The SO interaction in Equation (4-5) has both diagonal and off-diagonal terms
in o. The former snift the no-spin bands as determined by the central
potential vm(gp,z') while the latter admix or split the no-spin bands. While

in Equation (4-5) both terms are controlled by the same spin interaction, we
will argue in the next section that in the context of a phenomenological

approach these two types of terms should be parametrized separately.
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SECTION 5

BAND STRUCTURE OF PbSe IN THE r-L ([111]) DIRECTION

To demonstrate the viability of the present method, we calculate in this
section the low bands of PbSe along the r-L direction. This example has been

analyzed in I in the absence of SO interaction. The analysis serves a dual
purpose: to examine the implementation of the wave equation (4-3) and to

demonstrate the type of physical insight the present approach provides. Since
the convergence of the multipole expansion has been demonstrated in I, we
consider here only the SO effects. To keep the discussion focused, the
section is subdivided according to the various aspects of the analysis.

THE SPIN-ORBIT INTERACTION

We discuss first Equation (4-5) in the context of the L (A 6 ) and
L4 5 (A4 5) symmetries. The I-values for which the SO form factor

EquatioA (2-14) does not vanish, given the symmetry relations Equation (3-5),
are shown in Table 5-1. The wave-function I-sequences for the above
symmetries are given in Tables 3-1, 3-2. Combining these two 1-constraints

yields the wave equation block structure in a, the spin projection, displayed
in Table 5-2: For the L6(A 6 ) bands, the SO terms occur in one diagonal block
(I = 3m+l) and the off diagonal blocks, Table (5-2a). On the other hand, for

the L.. 5 (A4 5) bands only the diagonal blocks (I - 3m±l) have SO terms,

Table (5-2b). This structure has a physical interpretation recalling that the

I - 3m blocks are associated with s-waves (and higher even waves) whereas the
I = 3m±l blocks with p-waves (and higher odd waves). Thus the diagonal SO

terms in the I = 3m±l describe the p-wave SO interaction while the off
diagonal SO terms describe the s-p SO mixing. Since the sl/2 and P1/2difrn,11 itth l/ and±/

interactions are, in general, quite different,11 it is expected that these two
types of terms have different strengths.

The parametrization of the SO interaction depends on the specifics of
the material. Since PbSe has two atoms in the unit cell, the SO form factor

f*(I'-!-J), Equation (2-11) and Appendix D, requires four parameters: the two
strengths and two ranges of the atomic SO interactions. The SO ranges are
taken to be that of Pb and Se atomic cores: The Pb core (Xe 4f 14 5dI0 ) is
approximately that of Ar and the Se core (Au 3dI0 ) is approximately that of

Cu. The core radii values are given in Table 5-3. The radial dependence is
taken to be a gaussian. A box form factor gives similar results (Appendix D).
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TABLE 5-1. SYMMETRY PROPERTIES OF THE SPIN-ORBIT FORM4 FACTOR f mgp,z')

-2 BWz) 0 0

-1 0 A(z') 0

0 0 0 C(z')

1 -A(z') 0 0

2 0 BWz) 0

3 0 0 D(z')

(a) A(-z') -A(z'), B(-z') - -B(z')

(b) C(-z') -*C(z'), D(-z') - D(z')

NOTE: The non-vanishing components and symmetries of the SO form factor
(Equation (3-4), (4-3b)).
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TABLE 5-2. BLOCK STRUCTURE OF WAVE EQUATIONS (4-3)

(3m+i) (3m)

0-i vm(gp,z') + f I (pz) f (±) ( ~ + f(Z,) (p
(3mi-) m' M a-- +

0-+1 f ()(gp,z,) _- + f~z, (gp,z ) vm(gp~z')
(3m) z m

(a): L~( 6  representations

0-i G-+i
(3m+i) (3m-i)

G-1~l V (gp,z') + f (±) (gpz') 0

0-+i 0 Vm( gp,z') + f (T) (gp,z')
(3m-i)

(b): L± 5 A 5  representations

NOTE: Schematic biock structure of the wave functions Equation (4-3) for the L~( 6
and L4 , 5(A4 ,5) bands. The a and I-sequence indices are expiicitiy indicated.
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TABLE 5-3. SPIN-ORBIT PARAMETERS

^ r
AH o s( " 1)

XSe [eV] APb [eV] r(Pb)(A) r(Se)(A)

REFERENCE

J. C. Philips (a ) .16 .66

H. J. Zeiger .14 .45
and G. W. Pratt(b)

This Work .14 .56 1.45 1.16

(a) We use A - .3 3*AA where AA is a spin-orbit splitting of Atom A,

Equation (7-28) in Reference 3, p.1 7 9 .

(b) We use Equation (3-61) in Reference 7 for the Atomic Spin-orbit Strengths.

NOTE: The spin orbit parameters, see Appendix D. The s and r parameters denote the
atomic SO strength and range parameters, respectively.
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The SO strengths are chosen as foll.ws. The ratio of the Pb and Se SO
strengths is taken from atomic data (see Table 5-3). This ratio is roughly
3.-4. and is kept fixed. The overall SO strengths, however, are adjustable
parameters. According to the above remark, the diagonal SO blocks (in Table
5-2) pertain to the p-wave whereas the off diagonal SO blocks pertain to s-p
SO mixing. Consequently we introduce two dimensionless SO scale parameters:

SND , a nondiagonal SO parameter and SD an diagonal SO parameter such that

A(Pb) SND ] A Pb' A(Se) = ND ] Se (5-1)

where APb, ASe are the "atomic" spin orbit strengths of Pb and Se, Table 5-3,
and A(Pb), A(Se) are the overall atomic SO strengths (see Appendix D). The
signs and magnitudes of SND, SD are determined by fitting two measured band
gaps (see the next subsection). Consider the Q bands (Table (5-2a). The "v"
terms in the I=3m block correspond to the Sl/2 potential. By the same token,

the "v + f terms in the I=3m+l block correspond to the P1/2 potential.
fomr11 ep 1  ptnilSince the latter is less positive than the former, we can expect SD<0 to

make "f±" negative. Strictly speaking, the wave equation, Equation (4-3),
implies that SND = SD ' However if SND#SD, it is reasonable to expect them to
share the same sign. Thus, heuristically, we expect both SND and SD are

negative.

RESULTS FOR PbSe ALONG THE [111] DIRECTION

The four relevant bands near the Fermi level are apparent from
Figure 5-1a. 1 These particular no-spin bands are calculated using an eight-

multipole basis, which is a computational compromise between a fully
convergent basis (12 multipoles) and our computing capacity. A consequence of
the eight-multipoles basis choice is that the no-spin bands are not adequately

described for K .5 (Equation (2-5)), i.e., for the lower half of the r-L line.
, V

At the L-point, the SO interaction admixes the (L3 ,LI) and the (L3 ,L2 )

bands, respectively. This is evident from comparing the I-sequences for the
L ± bands (Table 3-2) with those of L3 and L1 bands,(see I). Consequently,

given the particular arrangement of the ,L3 ,LI,L2 ,L3 bands in Figure 5-la, it
is expected that the band gap AEG = E(L 2 ) - E(L I ) will be reduced by the SO

interaction. This trend is demonstrated in Table 5-4 and Figure 5-2 for the
near-EF L± bands. Consider first the limit of SND - 0. From Table 5-2 it
follows that in this case only the p-wave (i-3m+l) blocks are modified. This
is evident from the first two columns of Table 5-4 where the L 3 ,L3 bands (the
two outermost L6 bands) move while the L1 ,L2 bands (the two innermost L

6

bands) do not. Positive SD tends to cluster the bands while, conversely, SD<0
fans out the bands. In the other limit, i.e., SD = 0, Table 5-2a implies that
only off-diagonal s-p mixing blocks exist. In this case the band gap is

reduced as expected and all bands move down. This statement is true for both
positive and negative SND* When both SND and SD are nonzero, a combination of

the above two effects is observed. In particular, when SND and SD have the

same sign, then the bands either cluster together for SND,SD>0 or fan out
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TABLE 5-4. BAND ENERGY DEPENDENCE ON SPIN-ORBIT PARAMETERS AT THE L-POINT L6

SND 0 0 0 ±30. 30. -30.

SD 0 -20. 20 0 30. -30.

Band Symmetry

L 6  10.718 11.436 t 9.965 * 10.573 t 9.977 1 11.670 t

L 6  9.424 9.424 9.424 9.312 4 9.439 t 9.297 4

L+ 8.853 8.853 8.853 8.830 . 9.093 . 8.792

L+  7.180 6.816 4 7.503 t 7.053 t 7.501 t 6.540 1

AE 0.571 0.571 0.571 0.482 0.366 .505

NOTE: The dependence of near-EF PbSe band energies, at the L-point, on the two spin-
orbit parameters, Equation (5-1). The trend of the band movement (in energy)
is indicated by an arrow and the band gap, AE. All energies are given in eV.

5-7



NAVSWC TR 91-326

Lui

0.

_ _?_0_ 0

*n j-4
0.
0

00

zz

oD ID
*0 0

03 0W

o g

010

0 00
-C

2n

o00

(Aa) 3

5-81-



NAVSWC TR 91-326

for SND,SD<O and the band gap is reduced. Figures 5-2a and 5-2b demonstrate
the trend for the physically relevant case when SND,SD<O. Note that a
sufficiently strong SO interaction reduces the band gap to the point of "band
inversion," and beyond. This effect of the SO interaction is well known in
narrow gap semiconductors, such as in the IV-VI.

Figures 5-lb and 5-1c show the calculated lowest ten bands and the
corresponding results from Kohn's work.12 Numerical details of the
calculation are given in Appendix E. We choose the SO parameters as SND
-60., SD - -15 to approximately reproduce two experimental band gaps at the L-
point: the smallest gap (E(L6) 6E(L)) and a secondary gap between the two
adjacent L+ bands. As Figures 5-lb and 5-1c show, this choice reproduces
quite well all the bands and relative spacings at the L-point and down to
about the mid- point of the r-L line. For smaller K values, some bands are
missing, and not all bands are in the correct order (Figure 5-1c is the
correct band structure). We understand these deficiencies as numerical
artifacts that originate from the eight-multipoles no-spin base choice. As
Figure 5-la shows, for K = .5 we have a spurious crossing of the L, and L 3
bands. This crossing creates a wrong sequence for two bands at the r-point.
Obviously, the SO mixing cannot rectify this deficiency; hence, the wrong
sequence at the P-point (Figure 5-1b). In addition, the (LI, L3 ) crossing
generates a degeneracy of equal-parity bands. For numerical reasons, the code
does not deal correctly with a situation of several, closely spaced and mixed
bands. This is the reason for the missing of a few bands for limited range of
K values. The same situation occurs at E-14eV, where again two closely spaced
bands occur.

From the comparison of Figures (5-1a) through (5-1c), we conclude that,
whenever the no-spin basis is adequate (i.e., K = .5 in our case), the bands
calculated by the present method compare well with the correct band structure.
Conversely, whenever the no-spin basis is deficient (i.e., K = .5 in our
case), the calculated bands with the SO interaction are deficient. This
outcome obviously suggests the choice of the fully convergent no-spin base as

a starting point, i.e., the 12 multipoles I (valid throughout the r-L line)
rather than the eight-multipoles basis used here. Such a calculation,
however, is beyond our present numerical capacity.
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NAVSWC TR 91-326

SECTION 6

SUMMARY AND DISCUSSION

We have generalized the cylindrical multipole approach to band structure
to include spin degrees of freedom and the SO interaction. The ensuing one-
dimensional set of wave equations is solved for the test case of PbSe in the
[111] direction. The results ar 3compared with the band structure calculated
by an entirely different method.

The combination of the formalism and test calculations demonstrates
advantages and limitations of the present approach. We have shown that the SO
interaction is accommodated naturally in the present formalism. Another
advantage of the present representation is that it obviates the band
symmetries which are admixed by the SO interaction. Thus, for instance, we
can readily understand the band-gap reduction at the L-point by the SO
interaction and the tendency to band inversion for sufficient strong SO
interaction. The calculated PbSe band structure in the [111] direction yields
the correct sequence and spacings at and around the L-point, where the Fermi-
level lies.

On the other hand, the method in its present form does not reproduce,
degenerate, or quasi-degenerate bands. At the r-point this problem can be
possibly alleviated provided the r-point symmetries can be introduced. At
other points on the r-L line, a fully convergent no-spin basis avoid incorrect
band ordering.
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APPENDIX A

IRREDUCIBLE REPRESENTATIONS OF THE DOUBLE GROUPS C (d )AD D (d)
3v 3d

Double groups arise when spatial symmetry operators act on products of

the form *(r)(X) where (X) is a spinor. Since (Equation (2-3)
A -- A

R [(r)(X)] - [R *(r)] JR(X)] (A-1)

A

the matrices of R in this basis form a group, termed the "double group."
A

The term reflects the fact that [R(X)] changes sign when any Euler angle is

changed by 2n. Hence to every rotation R correspond two matrices (R) and (R)

such that (R) -A-R. 2 Thus the order of a double group is twice that of the
original group.

For the sake of completeness we quote againA -3 the cylindrical
coordinates realization of the groups C3v and D3d:

A-1 Morgan, D. J., Solid State Theory, Landsberg, P. T., Ed., Wiley-
Interscience, London 1965, pp. 232-254.

A-2 Slater, J. C., Quantum Theory of Molecules and Solids, Vol. 2, McGraw-
Hill, New York, NY, 1965, Appendix 9.

A-3 Agassi, D. and Restorff, J. B., Pseudopotential Band Calculations Alone
a High-Symmetry Axis: Part I--Central Potential and the [111]
Direction, NAVSWC TR 91-324, 15 Jun 1991).
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C3v D3d

X0 ( ) - O() X0 '(4,z) - *(O,z)

X.lP( ) - *( ±2n/3) X.1 *($,z) -*(€±/3,-z)

Y Oy(()= 'P(-0) X±2*( ,z) -*( ±2/3,z)

Y±I*( ) - *(-±2n/3) X 3*( ,z) - *(O+R,-z)

YoCI(,z) - (-,z)

Y±l(O,z) -(-#±/3,-z)

Y±2*( ,z) - r(- ±2n/3,z)

Y3*( ,z) - *(-+U,-z) (A-2)

In Equation (A-2) * is an arbitrary function and *,z are the cylindrical
azimuthal angle and z coordinate, respectively. Note that Y0 is a plane
reflection and X3 is the inversion operator with respect to the origin.

According to Equation (A-1), to calcjlate the double group irreducible
representations requires the knowledge of R(X). This matter is discussed in
Reference (A-2) and we bring here only the results. For C ) ,the double
group corresponding to C3v, the results are:

x,11lf > - O± 11a > , X.llP> - rIT 1 >

v (d). Ia > - I1> Yo I> - "la >
y~] >- 1±] > -~]>._ll

3v/ Y,1 I-Q a > Yl- > - -f1* 113

0 - e i' 3  (A-3)

where in Equation (A-3) and throughout this appendix, (a) and (1) denote "spin
up" and "spin down" spinors, respectively.

The representations r are defined according to

where Ii> is an appropriate basis state. For the Cd) irreducible spin
where C~~3v irdcbesi

representations, we choose the following basis:
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A4: Ii > - e'ilc > + i e'il >,!

A5 : I > - eiOc > - i e'i41P >

A6: 1I > - la > , 12 > - lp >  (A-5)

The ensuing irreducible representations are given in Table A-1.

(d)
The group D3d , the double group corresponding to D3d, contains in

addition to the operators Equation (A-3) the space inversion and a ±R/3
rotation of *. The former does not effect spinors. Using the techniques of
Reference A-2, we obtain:

X+lIl >- ~ > I X+llp> - 0 1 l>

D3d X3 I >  I l> , X3 11> - 11>

Y±l la > - l 3 113 > 'Y.I I > - "±I 3a

Y0 
la > = 11 > Y0 

l1> - -
lac> (A-6)

The irreducible representations in Table A-2 are obtained from Equation (A-6)
and the following basis:

t" I > - [ei4lc > - i e'ij1P >1 U(z) I U(z) - -U(-z)

L: 1 > - [e'i#a > + i e-i41 >1 U(z) U(z) - -U(-z)

L: i > = (ei$'a > - i e-i$lp >1 U(z) U(z) - U(-z)

L5: 1l > - [e'la > + i e'i41 >1 U(z) U(z) - U(-z)

L: 1l > - lo > U(z) , 12 > - l1 > U(z) I U(z) - U(-z)

L6: 11 > = la > U(z) 12 > = 11 > U(z) I U(z) - -U(-z)

(A-7)

The basis functions Equation (A-5) and (A-7) manifest the spin-
projection in the z' direction, denoted by mj in Tables A-1 and A-2.
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TABLE A-I. IRREDUCIBLE SPIN REPRESENTATIONS OF C (d)• 3v

REPRESENTATION: A4  A 5  A6 (a)

mi: ±3/2 ±3/2 ±1/2

OPERATOR

X01 1 (1 0)x0 1
-1 -1 ~±l 0]

YO -0 

(Plane reflection) (1 01

0 ±. 0. 1

i = Xi ' i""Yi

(a) i -
/ 3

NOTE: The irreducible spin representations of the double group C3v The
group operators are defined in Appendix A. The designation of the spin
projection in the z-direction, mj, is predicated on the corresponding
basis functions, see Appendix A.
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TABLE A-2. IRREDUCIBLE SPIN REPRESENTATIONS OF D (d)
3d

REPRESENTATION: L L L L L (a) L (a)

mj: ±3/2 ±3/2 ±3/2 ±3/2 ±1/2 ±1/2

OPERATOR

X01 1 1 1 (10] [10]

X+-1 -1 1 1 :; 1 ~ [(02;1 -01]

+2-1 -1 -1 -1 [±l 0] (±1 0]

X31 1 -1 -11 0 10
(z parity) 10 1) 1 1

YO i -i -i
(Plane reflection) 11 01 [0 0]

Y ~ i-i 0 3. (0 £0 ( ±1 1l

Y+ i i 0 [0.0F1 0 ° Z1

11 01 10 10
Xi -"Xi ' i -"Yi

(a) -e
i / 3

(d)

NOTE: The irreducible representations of the double group D d ) . The group
operators are defined in Appendix A. The mj symbol is the same as in
Table 3-1.
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APPENDIX B

MULTIPOLE CONTENT OF THE C (d) AND D (d)ATIO

3v 3d SI ERSNAIN

r(d) (d)
The allowed A values for the spin representations of C 3v and the D3 d

groups are determined by the method used in Reference B-I. To demonstrate the

method, we analyze here the A6 representation of the C 3 )group. A similar

analysis applies to all other representations. The results are given in
Tables 3-1 and 3-2 of the main text.

From Table 3-1 it follows that the A 6 representation is of dimension

two. The general multipole expansion of the two basis spinors is

I X> = X U, (p,z) eil IoX > + X V, (p,z) eiAo Ip >
J~-00 1m-co

12> I W, (p,z) eiAO Ia > + I X, (p,z) eilO 11 > (B-1)
A=-z,.-

where (a) and (P) are the "up" and "down" spinors respectively. Apply now X,
and YO to Equation (B-I). Equations (A-l), (A-2) and Table A-I give:

X±I [I> = Q II> = ) UA (p,z) e i(i±2n/3) >

iA(#±2ii/3) -

+ VA (p,z) e I 1;3> (B-2)

B-I Agassi, D. and Restorff, J. B., Pseudopotential Band Calculations Along
a High-Symmetry Axis: Part I--Central Potential and the [1111
Direction, NAVSWC TR 91-324, 15 Jun 1991.
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X± 12> - i12> - I W, (p,z) eil( ±2n/3 )  l Ic >

i2($±2ir/3) -

+ X, (p,z) e ( n/ Q 1> (B-3)

YO 1i> - 12> - X U, (p,z) e i2  11> - X V, (p,z) e-i 11 Ia > (B-4)

where

- ei-/ 3  (B-5)

We now equate the spin and ei4 components on both sides of Equations
(B-2 -B-4). Consider first Equation (B-2). Equating the Uj(p,z) components
yields

+iA2 /3
U : e - 1 - 3m, m - 0, ±1, ±2, ... (B-6a)

and for the V2 (p,z) components

V e±iM 2 /3 a72 = 1 .2 - 3m+l, m - 0, ±1, ±2, ... (B-6b)

Similarly,

±iA2ii/3 +z2
WA: e - 1 = 3m-i, m - 0, ±1, ±2, ... (B-6c)

X ei /3 _= = 3m, m - 0, ±1, ±2, ... (B-6d)

To represent Equation (B-6) concisely, we introduce the following
representation, also employed in Tables 3-1 and 3-2. Since Ii>, 12> in
Equation (B-i) are spinors

[1 > 1 ), 1A > ]] the U2(p,z), V.2(p,z) and Wj(p,z), X.2(p,z)

are the multipole expansion of the "up" components and the "down" component,
respectively. Therefore we write Equations (B-6a) and (B-6b) symbolically as

1i> " I - 3m m , m - 0, ±1, ±2, ... (B-7)

or 11> - 3m +1 as a shorthand notation. Equations (B-6c) and (B-6d) can

similarly be written as

B-2



NAVSWC TR 91-326

12> 3m , m - 0, ±1, ±2, ... (B-8)

An important property of the multipole expansion is the I-parity, i.e.,
the phase relation between the I and -2 multipoles. This information is
derived from Equation (B-4):

UI(p.z) = XI(p,z)

V_2 (p,z) = -WI(p,z) (B-9)

To eliminate the p-dependence from Equation (B-9) recall that, e.g.,

U (P,z) = UI(g,z) JI(gp) (B-10)

g

and J_(x) = (-1)I J2 (x). Therefore, inserting Equation (B-10) into
Equation (B-9) gives

(-1) U 2 (g,z) = X2 (g,z) (B-lla)

-(-1) V_I(g,z) = W2 (g,z) (B-lib)

where, from Equation (B-2), 2 - 3m or 2 - 3m+l. Equation (B-Il) express the
2-parity relations. They can be combined into a self evident symbolic matrix
notation, see Table 3-3.

The other two spin representations of C (d)The thertwospinreprsenatios 3o C are analyzed in the same
3v

manner. For the D(d) double group we take the equations generated by X 1 , X3 ,
3d

and Y0 and employ Equations (A-2) through (A-6) and Table 3-2. The results

are given in Table 3-4. Note that a D(d) representation is characterized by
3d

the z-parity, i.e., the phase relation between e.g., Uj(g,z) and Ul(g,-z).

A corrolar result is obtained by comparing the 2-parity n2 for the
allowed 2 values Tables 3-1 and 3-2. This comparison readily yields the
"compatibility relations" between representations pertaining to a A-point and

the L-pointB-2:

B-2 Slater, J. C., Quantum Theory of Molecules and Solids, Vol. 2, McGraw-

Hill, New York, NY, 1965, Appendix 9.
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A-point L-point
L+

A4  L4, L4

A5  L5, L

A6  t, L (B-13)
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APPENDIX C

DERIVATION OF EQUATION (4-3)

Straightforward algebra leads (see Reference C-i, Appendix C) to the
following expression

A

(Y )(g 0 ,z')) = (a O)

-(Y)= i0 (a i(Gz,+k'+Lz)Z'-2(+)
-- @ o(')[Y( , X (k' '+J.')] e' eT

1GT+LTIg 0  (C-1)

In Equation (C-I) z' is the unit vector in the z'-axis direction, o is the
Pauli matrices vector, Equation (2-8), and we limit ourselves to rc' vectors
parallel to Z'. An important feature of Equation (C-1) is that,

aside from the a factor, it is a sum of products of two factors pertaining to

fn '(r'), a constrained summation and z'-dependent exponential.

Therefore, according to the multipole decomposition theorem,C '1  Vd ) can be
expressed in terms of products of multipoles pertaining to the two factors.

To carry out this exercise, we first focus on the vector product in
Equation (C-i) and introduce the following constructs:

C-I Agassi, D. and Restorff, J. B., Pseudopotential Band Calculations Along
a High-Symmetry Axis: Part I--Central Potential and the [1111
Direction, NAVSWC TR 91-324, 15 Jun 1991).

C-i
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T) - ,e (Lz" +k')z' e-i6(')

I'xl (gFgF
1,T FF

*(i =(o)('L') L ei(Lz,+k')z' i2e6ZLT')Iy,(gF ') '( )Ly,

(C) i2 (a) i(Lz,+k')z ' -ila(-'

Iz (gFiz') = (W') (k'+Lz,) e e L (C-2)

By noting that (Lx  + iLy )/gF T (Reference C-i), these multipoles
take the form:

.(a)(z) igF (a)g _(o)(Fz
,x (g' = -2- (I -gF 'z ')  

- +i F

(a) F (a) (a)* , y , ( F - 2 - [ i f _ l- ( g F 'z  ) + * + l (g F 'z ) ]

(gF, - - , i (gF'z) (C-3)

Each components of the vector Vo), Equation (C-i), has the structure of

Equation (C-1) in (Reference C-i) provided v( ') is replaced by either

fx,(o'), f ,(C') or fz,(#')(Equation (2-14)), and *(I') is replaced by either

*(o)(r,) Lx , y(o)(t,) Ly or 1(a)(tI)(k'+L). Therefore, the decomposition

theorem (Appendix C, Reference C-1) applies provided vm(gp,z') is replaced

by fm(gQ,z') (Equation (3-4) in main text) and *I. (gF,z') is replaced by
Equation (C-3). These steps, and the evaluation oT the vector product

with a in Equation (C-I) and projection on both (X(O)) spinors gives

Equation (4-3) of the main text.

C-2
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APPENDIX D

MODELS FOR THE SPIN-ORBIT VECTOR FORM FACTOR

The spin orbit form factor f (G') is related to the radial form factor
through Equation (2-11) :D1

i iG- e'[ t4 e if Or - I) I (D-1)

j ' 0 J

In Equation (D-1) 0 is Vhe unit cell volume, j runs over all atoms in the unit
cell with coordinates r. with respect to a chosen origin, and fj(lP'l) is a
phenomenological form factor for the j-th atom.

The integral in Equation (D-1) should be carried out in the primed
coordinates. This is difficult since the integration limits there are
awkward. The problem is avoided by transforming the integration to the

unprimed coordinated and then applying the VG' operator. In the unprimed
coordinates the integral in Equation (D-l) takes the form

(G) - f df e f (1r-rjl) (D-2)

Therefore, for a separable radial form factor, I( ) takes a separable form
and, hence, easily calculable. The expressions gelow for a constant fj(1'-
rjl) are easily extended to a separable gaussian.

For a constant radial form factor fj('-'jI) E A. with a ranger, the
integral Equation (D-2) takes the form

lj(G) - A. J.(Gx ) J.(Gy) Jj(G ) (D-3)

where the integrals I (G ' ) depend on whether the atom j is at the unit cell
center (Se) or the eight eighth-atom at the corners of the unit cell (Pb).
The former takes the form:

D-1 Landsberg, P. T., Solid State Theory, Landsberg, P. T., Ed. Wiley-

Interscience, London 1969, p. 77.

D-1
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rSe -iG t

12 (G) Ise(Gy) - f dt e - Z2 (G-, rse) (D-4)
-rse

where

2 sin (G r)

Z2 (G 'r) - G

Z2 (0,A) - r (D-5)

Consider now the integrals Ij(G.) pertaining to the Pb atom. For an
atom at the rI = (0,0,0) corner

( r iG x 1 -iG rpb/2
11(G ) - I(1)(G f - dx e" - e Z (G/2,rpb)

0Pb 0 2 (D-6)

By the same token, the contribution of the r2- (a,0,0) corner is

(2) a -iG (x-a) r()(
IPb (G) = f dx e [I Pb(G (D-7)

a-r

Using similar relations, the IPb( ) contributions from all eight corners are
easily evaluated.

We turn now to Equation (D-l) to sum the contribution from all atoms in
the unit cell. The tricky parts are the eight Pb contributions located at

r = (0,0,0) , r2 - a j - j-'

r - a[F J__, , r4 - a [ , Z3 0

rI + r8 - r2 + r7 - r3 + r6 - r4 + r5  A' a (0,0,1) (D-8)

and a* - aF . With the help of Equation (D-8), the form factor
Equation (D-l) takes the form:

G f )G G)] (D-9)

()- [ Pb( 0' + 'Se(")

D-2
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where

2Ab iG'-. '/2

f pb(G') = e * Re

exp [-iG'-('rj - A'/2) v-, (II(G x ) Il(Gy) Il(Gz)

+ exp -iG'-('r - -A'/2) 74--+ (1i(C x ) Ii(Gy) Ii(Gz)

exp [ - i'.(r - A'/2) v-, (Ii(Gx) Ii(Gy) Ii(G)) ]
+ exp [ - ix'(r -'/2) 1 (I 1 ]

+ exp - '/2 V I (G) I(C) l(G))] }

f (G' = Ae e V/,(12(G) 1 2 (G) 1 2 (G)) (D-10)fSe S

To evaluate Equation (D-10), it is necessary to carry out the gradients.

Since the gradient transforms like a vector under a rotation, we can

immediately write:

R I-x'y'z (D-11)

where R is the transformation from the primed to the unprimed coordinates

(Reference D-2, Equation (2-1)). Since both II(G ) and 12 (G ) are given in

terms of elementary functions, Equation (D-1O) can be evaluated analytically.

For a gaussian form factor, the above analysis remains unchanged except

for the expressions for Il (G , 12 (G) which, instead of Equation (D-5),

involves the error function.

D-2 Agassi, D. and Restorff, J. B., Pseudopotential Band Calculations Along
a High-Symmetry Axis: Part I--Central Potential and the [1111

Direction, NAVSWC TR 91-324, 15 Jun 1991 (unpublished).
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APPENDIX E

NUMERICAL SOLUTION OF THE MULTIPOLE WAVE EQUATION

The wave equation (Equation (4-3) of the main text) is numerically
solved by converting it to a secular equation as described in Reference E-l,

Appendix E. We elaborate here only new details associated with the SO

interaction.

To ensure that the numerically computed spin-orbit form factor
(Equation (2-11) of the main text) has the correct transformation properties,
we invoke the analogy

V ~i)<>fr)(E-1)

which follows from comparing with Equation (2-8) of the main text. In

Equation (E-1), V(r') transforms as a scalar under the groups D3d or C3v.
Therefore, from Equation (2-8)

S(G') <-> i G' V(,' (E-2)

or

f (G') [ i]av (E-3)

In Equation (E-3), c(n') denotes the calculated spin-orbit form factor

GC

and [ ' ] av Equation (D-1) and is the average over all C' vectors

E-1 Agassi, D. and Restorff, J. B., Pseudopotential Band Calculations Along
a High-Symetry Axis: Part I--Central Potential and the [1111

Direction, NAVSWC TR 91-324, 15 Jun 1991 (unpublished).
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which have the same , . If tc(d') has the exact transformation
properties, then fav( ) - rc ('). Otherwise, fav(C') has the correct
transformation properties. The symmetrization Equation (E-3) has been used in

all calculation.

The a-mixing terms in Equation (4-3) are either proportional to
fZ )(gpz') or to the derivativefalaz'. Formally, the derivative appears in
a hermitian combination (in a): fm+)(z') 8/az' vs -f(')(z') a/az' for a--+I
and a=-l equations, respectively (the third term in Equation (4-3)). This

hermiticity, however, is broken in the process of converting Equation (4-3)

into a secular equation: As a consequence of our usage of sparse Fourier
components, (which depend on go and g ), the set of bra-plane waves Im> may be

different from the ket-plane waves <my (see Appendix E, Reference E-1) whereas
the derivative acts always to the right. To correct for this artifact, we

symmetrize the derivative term as follows (Q(z) is an arbitrary function):

<m1 Q(z) z In> - 1 <ml -[ Q(z) + Q(z) M>

E<I[ a~ ]S In> (E-3)

The substitution Equation (E-3) has its origin in the spin-orbit form,
Equation (2-8). There the gradient operator acts to the right. Equivalently,

the gradient can be made act to the left by commutation with the spin-orbit
form factor, i.e.,

V v(r) x (M)L -(M )R x v v(r) (E-4)

where the left (L) and right (R) labels explicitly indicate the direction of

the gradient operator. All subsequent calculations employ the symmetrized

derivative form Equation (E-3).

E-2
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